Copied to
clipboard

?

G = C4228D14order 448 = 26·7

28th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4228D14, C14.802+ (1+4), C41D49D7, (C2×D4)⋊13D14, (C4×C28)⋊37C22, C23⋊D1428C2, (D4×C14)⋊34C22, C422D719C2, Dic7⋊D439C2, (C2×C14).264C24, (C2×C28).638C23, Dic7⋊C437C22, D14⋊C4.75C22, C2.84(D46D14), C23.D738C22, C23.70(C22×D7), C75(C22.54C24), (C22×C14).78C23, (C23×D7).73C22, C22.285(C23×D7), C23.18D1428C2, (C2×Dic7).138C23, (C22×Dic7)⋊30C22, (C22×D7).118C23, (C7×C41D4)⋊15C2, (C2×C4).216(C22×D7), (C2×C7⋊D4).80C22, SmallGroup(448,1173)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4228D14
C1C7C14C2×C14C22×D7C23×D7C23⋊D14 — C4228D14
C7C2×C14 — C4228D14

Subgroups: 1356 in 252 conjugacy classes, 91 normal (12 characteristic)
C1, C2 [×3], C2 [×6], C4 [×9], C22, C22 [×22], C7, C2×C4 [×3], C2×C4 [×9], D4 [×12], C23, C23 [×3], C23 [×5], D7 [×2], C14 [×3], C14 [×4], C42, C22⋊C4 [×12], C4⋊C4 [×6], C22×C4 [×3], C2×D4 [×6], C2×D4 [×6], C24, Dic7 [×6], C28 [×3], D14 [×10], C2×C14, C2×C14 [×12], C22≀C2 [×3], C4⋊D4 [×6], C22.D4 [×3], C422C2 [×2], C41D4, C2×Dic7 [×6], C2×Dic7 [×3], C7⋊D4 [×6], C2×C28 [×3], C7×D4 [×6], C22×D7 [×2], C22×D7 [×3], C22×C14, C22×C14 [×3], C22.54C24, Dic7⋊C4 [×6], D14⋊C4 [×6], C23.D7 [×6], C4×C28, C22×Dic7 [×3], C2×C7⋊D4 [×6], D4×C14 [×6], C23×D7, C422D7 [×2], C23.18D14 [×3], C23⋊D14 [×3], Dic7⋊D4 [×6], C7×C41D4, C4228D14

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D7, C24, D14 [×7], 2+ (1+4) [×3], C22×D7 [×7], C22.54C24, C23×D7, D46D14 [×3], C4228D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 100 19 107)(2 108 20 101)(3 102 21 109)(4 110 15 103)(5 104 16 111)(6 112 17 105)(7 106 18 99)(8 60 24 67)(9 68 25 61)(10 62 26 69)(11 70 27 63)(12 64 28 57)(13 58 22 65)(14 66 23 59)(29 55 88 74)(30 75 89 56)(31 43 90 76)(32 77 91 44)(33 45 92 78)(34 79 93 46)(35 47 94 80)(36 81 95 48)(37 49 96 82)(38 83 97 50)(39 51 98 84)(40 71 85 52)(41 53 86 72)(42 73 87 54)
(1 84 10 77)(2 78 11 71)(3 72 12 79)(4 80 13 73)(5 74 14 81)(6 82 8 75)(7 76 9 83)(15 47 22 54)(16 55 23 48)(17 49 24 56)(18 43 25 50)(19 51 26 44)(20 45 27 52)(21 53 28 46)(29 66 95 104)(30 105 96 67)(31 68 97 106)(32 107 98 69)(33 70 85 108)(34 109 86 57)(35 58 87 110)(36 111 88 59)(37 60 89 112)(38 99 90 61)(39 62 91 100)(40 101 92 63)(41 64 93 102)(42 103 94 65)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 25)(2 24)(3 23)(4 22)(5 28)(6 27)(7 26)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(14 21)(29 86)(30 85)(31 98)(32 97)(33 96)(34 95)(35 94)(36 93)(37 92)(38 91)(39 90)(40 89)(41 88)(42 87)(43 44)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(57 59)(60 70)(61 69)(62 68)(63 67)(64 66)(71 82)(72 81)(73 80)(74 79)(75 78)(76 77)(83 84)(99 107)(100 106)(101 105)(102 104)(108 112)(109 111)

G:=sub<Sym(112)| (1,100,19,107)(2,108,20,101)(3,102,21,109)(4,110,15,103)(5,104,16,111)(6,112,17,105)(7,106,18,99)(8,60,24,67)(9,68,25,61)(10,62,26,69)(11,70,27,63)(12,64,28,57)(13,58,22,65)(14,66,23,59)(29,55,88,74)(30,75,89,56)(31,43,90,76)(32,77,91,44)(33,45,92,78)(34,79,93,46)(35,47,94,80)(36,81,95,48)(37,49,96,82)(38,83,97,50)(39,51,98,84)(40,71,85,52)(41,53,86,72)(42,73,87,54), (1,84,10,77)(2,78,11,71)(3,72,12,79)(4,80,13,73)(5,74,14,81)(6,82,8,75)(7,76,9,83)(15,47,22,54)(16,55,23,48)(17,49,24,56)(18,43,25,50)(19,51,26,44)(20,45,27,52)(21,53,28,46)(29,66,95,104)(30,105,96,67)(31,68,97,106)(32,107,98,69)(33,70,85,108)(34,109,86,57)(35,58,87,110)(36,111,88,59)(37,60,89,112)(38,99,90,61)(39,62,91,100)(40,101,92,63)(41,64,93,102)(42,103,94,65), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,25)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(14,21)(29,86)(30,85)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,90)(40,89)(41,88)(42,87)(43,44)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(83,84)(99,107)(100,106)(101,105)(102,104)(108,112)(109,111)>;

G:=Group( (1,100,19,107)(2,108,20,101)(3,102,21,109)(4,110,15,103)(5,104,16,111)(6,112,17,105)(7,106,18,99)(8,60,24,67)(9,68,25,61)(10,62,26,69)(11,70,27,63)(12,64,28,57)(13,58,22,65)(14,66,23,59)(29,55,88,74)(30,75,89,56)(31,43,90,76)(32,77,91,44)(33,45,92,78)(34,79,93,46)(35,47,94,80)(36,81,95,48)(37,49,96,82)(38,83,97,50)(39,51,98,84)(40,71,85,52)(41,53,86,72)(42,73,87,54), (1,84,10,77)(2,78,11,71)(3,72,12,79)(4,80,13,73)(5,74,14,81)(6,82,8,75)(7,76,9,83)(15,47,22,54)(16,55,23,48)(17,49,24,56)(18,43,25,50)(19,51,26,44)(20,45,27,52)(21,53,28,46)(29,66,95,104)(30,105,96,67)(31,68,97,106)(32,107,98,69)(33,70,85,108)(34,109,86,57)(35,58,87,110)(36,111,88,59)(37,60,89,112)(38,99,90,61)(39,62,91,100)(40,101,92,63)(41,64,93,102)(42,103,94,65), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,25)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(14,21)(29,86)(30,85)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,90)(40,89)(41,88)(42,87)(43,44)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(83,84)(99,107)(100,106)(101,105)(102,104)(108,112)(109,111) );

G=PermutationGroup([(1,100,19,107),(2,108,20,101),(3,102,21,109),(4,110,15,103),(5,104,16,111),(6,112,17,105),(7,106,18,99),(8,60,24,67),(9,68,25,61),(10,62,26,69),(11,70,27,63),(12,64,28,57),(13,58,22,65),(14,66,23,59),(29,55,88,74),(30,75,89,56),(31,43,90,76),(32,77,91,44),(33,45,92,78),(34,79,93,46),(35,47,94,80),(36,81,95,48),(37,49,96,82),(38,83,97,50),(39,51,98,84),(40,71,85,52),(41,53,86,72),(42,73,87,54)], [(1,84,10,77),(2,78,11,71),(3,72,12,79),(4,80,13,73),(5,74,14,81),(6,82,8,75),(7,76,9,83),(15,47,22,54),(16,55,23,48),(17,49,24,56),(18,43,25,50),(19,51,26,44),(20,45,27,52),(21,53,28,46),(29,66,95,104),(30,105,96,67),(31,68,97,106),(32,107,98,69),(33,70,85,108),(34,109,86,57),(35,58,87,110),(36,111,88,59),(37,60,89,112),(38,99,90,61),(39,62,91,100),(40,101,92,63),(41,64,93,102),(42,103,94,65)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,25),(2,24),(3,23),(4,22),(5,28),(6,27),(7,26),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(14,21),(29,86),(30,85),(31,98),(32,97),(33,96),(34,95),(35,94),(36,93),(37,92),(38,91),(39,90),(40,89),(41,88),(42,87),(43,44),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(57,59),(60,70),(61,69),(62,68),(63,67),(64,66),(71,82),(72,81),(73,80),(74,79),(75,78),(76,77),(83,84),(99,107),(100,106),(101,105),(102,104),(108,112),(109,111)])

Matrix representation G ⊆ GL8(𝔽29)

516000000
1324000000
005160000
0013240000
000000280
000000028
00001000
00000100
,
102700000
010270000
102800000
010280000
000091400
0000152000
000000914
0000001520
,
2121000000
826000000
2121880000
8262130000
0000101000
0000192200
0000001919
000000107
,
88000000
321000000
00880000
003210000
0000191900
000071000
0000001010
0000002219

G:=sub<GL(8,GF(29))| [5,13,0,0,0,0,0,0,16,24,0,0,0,0,0,0,0,0,5,13,0,0,0,0,0,0,16,24,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0],[1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,27,0,28,0,0,0,0,0,0,27,0,28,0,0,0,0,0,0,0,0,9,15,0,0,0,0,0,0,14,20,0,0,0,0,0,0,0,0,9,15,0,0,0,0,0,0,14,20],[21,8,21,8,0,0,0,0,21,26,21,26,0,0,0,0,0,0,8,21,0,0,0,0,0,0,8,3,0,0,0,0,0,0,0,0,10,19,0,0,0,0,0,0,10,22,0,0,0,0,0,0,0,0,19,10,0,0,0,0,0,0,19,7],[8,3,0,0,0,0,0,0,8,21,0,0,0,0,0,0,0,0,8,3,0,0,0,0,0,0,8,21,0,0,0,0,0,0,0,0,19,7,0,0,0,0,0,0,19,10,0,0,0,0,0,0,0,0,10,22,0,0,0,0,0,0,10,19] >;

61 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D···4I7A7B7C14A···14I14J···14U28A···28R
order12222222224444···477714···1414···1428···28
size11114444282844428···282222···28···84···4

61 irreducible representations

dim11111122244
type++++++++++
imageC1C2C2C2C2C2D7D14D142+ (1+4)D46D14
kernelC4228D14C422D7C23.18D14C23⋊D14Dic7⋊D4C7×C41D4C41D4C42C2×D4C14C2
# reps1233613318318

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{28}D_{14}
% in TeX

G:=Group("C4^2:28D14");
// GroupNames label

G:=SmallGroup(448,1173);
// by ID

G=gap.SmallGroup(448,1173);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,219,1571,570,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽